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A B S T R A C T   

The importance of considering ecological connectivity in the design of marine protected areas (MPAs) and 
ecologically coherent networks of protected areas across coasts and oceans has risen in prominence with the 
2022 Kunming-Montreal Global Biodiversity Framework. This short communication highlights key messages 
emerging from a specialist conference session on marine connectivity by members of the IUCN-WCPA Marine 
Connectivity Working Group at the Fifth International Marine Protected Areas Congress (IMPAC5) in Vancouver 
in 2023. We consider the importance of spatial and temporal scale, knowledge and data gaps and some of the 
technological and scientific advances that are generating insights into species movements that can inform the 
ecologically meaningful design of protected areas for effective conservation of ecosystem integrity, biodiversity 
and the flow of ecosystem services.   

1. Introduction 

The importance of considering ecological connectivity in the design 
of marine protected areas (MPAs) and ecologically coherent networks of 
protected areas across coasts and oceans has risen in prominence with 
the 2022 Kunming-Montreal Global Biodiversity Framework. This short 
communication highlights key messages emerging from a specialist 
conference session on marine connectivity by members of the IUCN- 
WCPA Marine Connectivity Working Group at the Fifth International 
Marine Protected Areas Congress (IMPAC5) in Vancouver in 2023. This 
IMPAC5 session (no. LCS-1464) consisted of two parts. First, the session 
participants were provided with an introduction to marine and ecolog
ical connectivity, and to the IUCN-WCPA Marine Connectivity Working 
Group (MCWG), which was created in 2019 to advance global science 
and policy collaboration in marine connectivity. This introduction 
included support for the Convention on Biological Diversity (CBD) 
Global Biodiversity Framework goals and targets to increase global 
coverage of MPAs and natural ecosystem protection taking into account 
connectivity [1]. Secondly, presentations were made by five 

international experts covering marine connectivity with respect to the 
deep sea, migratory sharks, seascape ecology, marine genetics, and 
North American MPA collaborations. This ‘Short Communication’ 
highlights key messages from the session, which is largely based on 
‘rules of thumb’ for MPA network design e.g., [2] as developed in a 
recent IUCN publication (see [3]).1 

We offer the analysis and insights below as a snapshot of how sci
entists and managers are advancing knowledge and practice in design 
and implementation of marine connectivity for MPAs and networks. 
Scientific knowledge and practice in this field are at early stages of 
development with many more unknowns than for terrestrial connec
tivity. As highlighted here marine connectivity presents unique on-site 
challenges with such issues as scale, defining connectivity objectives, 
data limitations, capacity and policy inadequacies, and transdisciplinary 
and technology needs. Formal generic guidelines on ecological con
nectivity provide essential baseline. But knowledge specific to marine 
connectivity application is still an early ‘work in progress’ and what is 
presented below provides insights for what might be called ‘rules of 
thumb’ to help inform ongoing science and policy work in this critical 
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1 “When science has gaps, uncertainties, and as yet significantly unexplored domains, as is the case with connectivity in the marine environment, practical ‘rules of 
thumb’ can provide basic guidance for planning and management" [2]. Because of ongoing scientific gaps and uncertainty, ‘Rules of thumb’ have been prepared by 
the IUCN-WCPA Marine Connectivity Working Group [4] to help guide connectivity design [3]. 
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area of marine biodiversity conservation (Table 1). 
Marine biodiversity is decreasing due to many stressors, particularly 

overfishing, habitat loss, and climate change [5,6]. Marine Protected 
Areas (MPAs) and MPA networks are widely used as place-based pro
tective measures for marine biodiversity (e.g., genetic, species, func
tional groups) and ecological functions (e.g., population and ecosystem 
productivity). Ecological connectivity underpins community recovery 
from disturbance, as well as the functions and performance of MPAs; 
thus, it is essential to identify and build connectivity into the 
decision-making for the design and management of MPAs and MPA 
networks [7,8]. Although almost every coastal country has at least one 
marine and coastal protected area [9,10] information gaps exist on the 
critical role of connectivity for sustaining marine biodiversity. It is 
recognized that connectivity promotes resilience to disturbance and 
enhances recovery potential of impacted ecosystems [11]. Despite this 
importance, connectivity is among the most infrequently and ineffec
tively applied ecological criteria in MPA network design, management, 
and evaluation [8,12,13], often because it is difficult to measure [8,14]. 
Considering connectivity in MPA design will advance efforts to mitigate 
threats, ensure that marine populations have access to the locations they 
need to thrive and to maintain biodiversity and ecosystem services 
[15–18]. 

IUCN Guidance. The importance of considering ecological connec
tivity in conservation has been framed by the 2020 IUCN Guidelines for 
Conserving Connectivity through Ecological Networks and Corridors2 (the 
‘Guidelines’). In this document, from an ecological perspective, con
nectivity has been defined as “The movement of organisms, including 
their genes, gametes and propagules, between populations, communities 
and ecosystems, as well as that of non-living material from one location 
to another” [19]. From a conservation policy perspective, ecological 
connectivity has been defined as the “unimpeded movement of species 
and the flow of natural processes that sustain life on Earth” [20]. The 
Guidelines also include other key terms, and differentiate the role of 
protected areas and other conservation categories for conserving 
biodiversity:  

• Ecological network of protected areas for conservation – A system of 
core habitats (protected areas, OECMs and other intact natural 
areas), connected by ecological corridors, which is established, 
restored as needed and maintained to conserve biological diversity in 
systems that have been fragmented see [21,22].  

• OECMs (other effective area-based conservation measures) – 
geographically defined areas other than protected areas, governed 
and managed to achieve positive and sustained long-term outcomes 
for the in situ conservation of biodiversity [4].  

• Ecological Corridor – A clearly defined geographical space that is 
governed and managed over the long-term to maintain or restore 
effective ecological connectivity. 

2. Specific points for consideration 

2.1. Scale 

The spatial and temporal scales over which connectivity operates 
differ among individuals, life stages and species, and are also system- 
specific, being a function of the life-history and traits of the organ
isms, and the dynamic patterns and processes in the surroundings. In 
seascape ecology, the spatial composition and configuration of patches 
influences connectivity, where patch mosaics (e.g., reefs, vegetated 
corridors) and gradients in the seascape (e.g., channels, slopes, tem
perature) can form corridors and stepping stones that influence how 
species move through their environment [23]. Understanding how 
different life-history stages utilize different habitat types is critically 
important in designing effective MPA networks given that larvae, ju
veniles and adults of a single species may have different habitat re
quirements to meet their needs for feeding and refuge during 
ontogenetic shifts, daily and seasonal migrations or reproductive mi
grations [16,24,25]. 

Considerations of connectivity are most effective if they are multi- 
scale in space and time, and for MPA design if they are relevant both 
within and between focal areas. This is because multi-scale consider
ations of connectivity should reflect the dispersal patterns and ability of 
all species in an ecosystem, However, this is rarely, if ever, achievable in 
practice because of pronounced differences among taxa in dispersal 
capability based on differences in mode of reproduction, larval behav
iors, habitat preferences, etc. [24,26]. For broad-ranging species, con
servation of connectivity corridors is most likely to yield the desired 
conservation outcomes at broad scales and will likely require trans
national collaboration, for example, the North American Marine Pro
tected Areas Network (NAMPAN – Canada, USA, Mexico – http://nampa 
n.org/) or the South Pacific Regional Fisheries Management Organisa
tion (SPRFMO – New Zealand, Australia and other South Pacific states - 
https://www.sprfmo.int/). There is increasing evidence of the impor
tance of inter-jurisdictional and transboundary connections for many 
marine species from studies of physical oceanography [27–30], genetic 
connectivity [26,31] and tracking of individual movements [24,32,33]. 
Understanding offshore and coastal species’ transboundary distributions 
and connections, including land-sea and freshwater-marine connections 
[34–36], is critically important to help determine whether existing MPA 
networks are fulfilling the expected conservation role. 

Whilst bigger MPAs are usually better than smaller MPAs for con
servation outcomes and when including the spatial scales of connectivity 
for many species [37,38], conservation design must also consider tem
poral scales of connectivity. Thus, to understand the influence of MPAs 
on connectivity, multi-site and multi-year baseline data before MPA 
establishment are useful, as well as monitoring data after establishment 
[39–41]. However, often such pre-establishment data do not exist and 
although the monitoring of post-establishment MPAs is informative for 
connectivity (and other metrics), the interpretation of such data may be 
confounded by other factors, esuch as climate change [42,43]. This 
highlights the challenges presented by data limitation (see subsequent 
section) in evidence-based MPA network design and may require proxies 
or surrogate data to address knowledge gaps [44]. 

2.2. Defining success for connectivity objectives 

There is no ‘one size fits all’ approach for MPA success. Successful 
MPA networks must consider species-specific biological (e.g., genetic 
structure, life history, behavioral and reproductive) differences and re
sponses to protection. An example is the conservation of groups such as 
coastal and oceanic species of sharks [45]. Many shark species are 
resident at the scale of the reef (at a spatial scale much larger than for 
invertebrates such as lobsters and conch, and territorial fish species) but 
many are also highly migratory, with many transoceanic migrations 
having now been recorded by tagging and tracking studies [46,47]. 

Table 1 
Differences in the role of protected areas, OECMs and ecological corridors (taken 
from Hilty et al. 2020).   

Protected 
areas 

OECMs 
Ecological 
corridors 

MUST conserve in situ 
biodiversity 

• •

MAY conserve in situ 
biodiversity   

•

MUST conserve connectivity   •

MAY conserve connectivity • •

2 Download Guidelines through: https://portals.iucn.org/library/node/ 
49061 
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Thus, for highly migratory species such as sharks, rays, turtles and 
whales, the connectivity conservation benefits of MPAs are likely to be 
greatest when the placement and the size and shape of MPAs considers 
reproductive and breeding areas, nursery areas, migratory routes, 
resting areas, and foraging areas [16,48–50]. Progress is being made 
with global recognition of ‘swimways’ that span multiple nations - a 
concept analogous to flyways for birds [51] and with mapping desig
nations such as Important Marine Mammal Areas (IMMAs), Important 
Bird Areas (IBAs) and the new Important Shark and Ray Areas (ISRAs). 
Having clearly identified measurable objectives against which to mea
sure MPA performance may be one way in which policy makers and 
managers can estimate success or failure, identify regions or habitats or 
taxa that are not protected, and modify management practice to enhance 
overall performance [52–54]. 

2.3. Getting around lack of data 

The lack of data availability on the distribution of habitat types, 
species dependencies and key ecosystem processes may hinder the 
establishment of new MPAs. Similarly, a lack of capacity (skilled 
personnel) in many countries may hinder the collection of appropriate 
data. For example, in coastal areas, an absence of sufficient data about 
life-history traits of taxa, seasonal catches of targeted species, or how 
different life-history stages use different habitat types during the spe
cies’ life cycle may be a challenge to decision making about MPA 
location, size, siting, and management. In the deep sea (depth greater 
than 200 m), little is known about reproductive cycles and the timing 
and duration of dispersal for many species [27,30]. Practitioners are 
therefore often forced to construct theoretical scenarios based on limited 
knowledge or by comparison to other related species or genera from 
different regions or depths, to estimate connectivity. The absence of 
direct functional connectivity data (e.g., tracking with telemetry) com
bined with a lack of understanding of relevant interpretations of the data 
that do exist impede MPA design and implementation in many regions. 
In these instances, spatially explicit mathematical models can help 
define relevant spatial and temporal scales at which connectivity oper
ates [8,29,30]. However, because these models require human and 
computational resources, frequently not readily available, methodolo
gies of intermediate complexity may suffice in certain contexts [55]. In 
some instances, local ecological knowledge has provided the most reli
able information on ecological connectivity such as from fishers’ 
knowledge [56]. 

Habitat suitability modelling [57], joint species distribution model
ling [58] and graph theoretic models [59] may be used where there are 
limited data on spatial distributions of target species, communities, or 
ecosystems to develop scenarios that can provide information on habitat 
linkages and species dynamism. Structural connectivity (i.e., patch 
structure or spatial gradients) may serve as a spatial proxy for connec
tivity models and can form predictors in habitat suitability modeling to 
support improved spatial management where data are lacking [59,60] 
and may inform deep-sea fisheries management (closure) decisions [61]. 

2.4. Barriers to implementation 

While a lack of data is in many instances a key impediment to con
servation success (i.e., establishment of a network of MPAs), it is not the 
only limiting factor. Lack of capacity and lack of communication of 
relevant scientific evidence to conservation can lead to an absence of 
implementation [8]. Lack of capacity and/or funding along with inad
equate policy support to implement science-based advances, to recruit 
personnel, to conduct MPA network monitoring and to police (enforce) 
the MPA rules are oft-cited problems hindering design and management 
of MPAs for connectivity [22,38]. Opposition to the establishment of an 
MPA network from local users is also an oft-cited problem [62,63], 
which sometimes may be solved by marine spatial planning that takes 
into account the histories, present and futures needs of all users [64]. 

2.5. Connectivity informed by transdisciplinary research 

Identifying rates and routes of species-specific connectivity is critical 
in the planning of MPA networks, although rarely used [15]. Under
standing where recruits come from (source populations) and whether a 
population makes little or no contribution to the network connectivity 
(sink populations) is key. Typically, the aim is to protect source pop
ulations whereas sink populations may not receive protection unless 
they act as an important stepping-stone population within a network. 
Molecular markers may be used to identify spatially explicit genetic 
variation and source populations [26,27,30,31,65] to better protect 
both coastal and deep-sea species. 

Studies are increasingly taking transdisciplinary approaches to 
quantifying connectivity. For example, estimates of genetic connectivity 
may be tested against oceanographic (particle tracking) models to 
determine if the known or the most likely physical oceanographic con
ditions (e.g., current direction, rate of flow, seasonality) explain 
observed genetic connectivity [29,30,66,67]. Whilst most studies report 
a high degree of correlation between physical oceanographic and ge
netic connectivity, there are exceptions that still need to be better un
derstood. Transdisciplinary approaches will help inform MPA placement 
in the future, but more region-specific physical oceanographic models 
need to be developed and validated before this technique can be widely 
used. 

2.6. Technological advances needed to support MPA design and well- 
connected MPA networks 

Advances in connectivity modeling and habitat suitability modeling, 
together with data from Earth observation satellites, pattern recognition 
algorithms, satellite and acoustic telemetry, soundscapes, chemical 
signatures and metabarcoding (eDNA) are rapidly breaking down the 
barriers to identifying ocean corridors [68–71]. Accelerated global 
seafloor mapping projects such as Seabed 2030 (https://seabed2030. 
org/) and local-scale nearshore mapping initiatives [72] will inform 
international and national management decisions about where to place 
new MPAs, how many, and what size they ought to be, to achieve 
conservation outcomes, as well as supporting the evaluation of existing 
MPAs, in coastal zones and the deep sea. 

Increasingly, multi-variable environmental data sets are available for 
use at different spatial scales. For example, EEZs of several different 
countries have now been mapped for a range of key environmental 
variables including depth, substrate type, temperature, salinity, dis
solved oxygen concentrations, calcite, aragonite and silicate concen
trations. An ability to understand genetic connectivity in terms of 
environmental variation [30,73] will play a key role in the establish
ment of new offshore MPAs, and such an approach may be applied 
wherever the necessary environmental data exist. However, for most 
countries these data are still lacking, and the technologies are often 
unavailable in developing countries , placing them in an inequitable 
position to develop and report progress on MPA connectivity. 

3. Conclusion 

Urgent action is needed to better understand, conserve, restore and 
leverage the critical ecological connectivity of marine and coastal areas. 
Unimpeded exchanges of individuals (larvae, juveniles, adults) are 
central to biodiversity, ecosystem functioning and resilience to stressors 
(e.g., climate change, urbanisation, habitat loss), and underpin the many 
contributions to human well-being particularly for coastal communities. 
However, ecological connectivity is a relatively abstract concept and 
setting targets for it presents a challenge. In particular, translating high- 
level conservation goals to actionable goals with quantitative objectives 
and meaningful indicators that require specific actions to be met is non- 
trivial with respect to connectivity. Additionally, specific actions will 
require different types of data and different approaches for obtaining 
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these data, and depending on the focal system (e.g., deep sea benthos 
versus migratory sharks). It is because of these complexities that all 
disciplines working in marine conservation have a role in advancing 
understanding, designing action, and advising on supportive polices for 
conserving areas important for connectivity. 
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